SUPPORT-INDUCED EFFECTS ON THE CO₂ HYDROGENATION PERFORMANCE OF Ni/Ce_{1-x}Zn_xO_{δ} CATALYSTS

G. Varvoutis^{1*}, M. Lykaki², S. Stefa², S. Karakoulia³, G.E. Marnellos^{1,3}, M. Konsolakis²

¹ Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece ² School of Production Engineering and Management, Technical University of Crete, Chania, Greece ³ Chemical Process & Energy Resources Institute, CERTH, Thessaloniki, Greece

* gvarvoutis@uowm.gr

ABSTRACT

The scheme of CO_2 hydrogenation is one of the most promising pathways for both the industrial CO_2 emissions valorization and the curtailment of intermittent renewable sources, such as solar and wind [1]. This reaction inevitably requires a catalyst, with nickel and ceria being among the most studied active metals and supporting materials, respectively [2]. Also, support modification via aliovalent metal doping can induce several changes in a metal/metal oxide system, with great implications in the overall catalytic performance [3]. In this work, the effect of ZnO doping on the physicochemical properties and CO₂ hydrogenation performance over CeO₂ supported nickel-based catalysts was examined. In specific, catalysts with 8 wt.% Ni supported on either bare ZnO, CeO2 nanorods or a mixed ZnO-CeO₂ oxide were synthesized by a modified hydrothermal method and were characterized by a variety of techniques, namely N₂ physisorption, XRD, Raman spectroscopy, SEM/EDS, TEM, H₂-TPR, CO₂-TPD and CO-TPD. Notable modifications in the reaction pathway were demonstrated, as the presence of ZnO induced an increase in CO production at T < 450 °C, whereas Ni/CeO_2 was completely selective to methane at the same temperatures. These findings were attributed to the inhibitory effect of ZnO on the redox properties, evidenced by H₂-TPR and Raman spectroscopy, the decrease in surface basicity required for CO₂ activation, revealed by CO₂-TPD and the increasing affinity for CO desorption (evidenced by CO-TPD experiments), a possible intermediate species for CO₂ methanation [4]. On the contrary, Ni/CeO₂ was associated with augmented reducibility, higher surface area, high moderate and total surface basicity, as well as strong CO affinity, which are crucial for the attainment of remarkably high CH₄ yields.

KEYWORDS: CO₂ hydrogenation, Ni/CeO₂, ZnO promotion, Selectivity change

ACKNOWLEDGMENTS

This research has been co-financed by the European Union and Greek national funds through the Greece 2.0 National Recovery and Resilience Fund, under the call RESEARCH - CREATE - INNOVATE (project code: T2EDK-01378).

REFERENCES

[1] Saeidi, S.; Najari, S.; Hessel, V.; Wilson, K.; Keil, F.J.; Concepción, P.; Suib, S.L. & Rodrigues, A.E. (2021). Prog. Energy Combust. Sci. 85: 100905.

[2] Lv, C.; Xu, L.; Chen, M.; Cui, Y.; Wen, X.; Li, Y.; Wu, C.E.; Yang, B.; Miao, Z. & Hu, X. (2020) Front. Chem. 8: 1-32.

[3] Porosoff, M.D. & Chen, J.G. (2013). J. Catal. 301: 30-37.

[4] Lee, W.J.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. (2020). Catal. Today, 368: 2-19.