UTILIZATION OF CO₂ SIMULTANEOUSLY WITH H₂ GENERATION BY ANAEROBIC CORROSION OF ZERO-VALENT IRON AT TEMPERATURE NEAR ROOM TEMPERATURE

D. Constantinou¹, C. Samanides¹, I. Vyrides^{1,*}

¹Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus * ioannis.vyrides@cut.ac.cy

ABSTRACT

Hydrogen (H₂) is considered as a clean, sustainable fuel, and it is promised to deliver a future with zero net emissions. Presently, nearly 96% of H₂ is produced from non-renewable sources (e.g., natural gas, coal, etc.) through a polluting method called the steam reforming process and the remaining 4% by electrolysis of water¹. Meanwhile, researchers are interested in an old commercial method: the iron-water process under mild hydrothermal conditions, where metallic iron Fe⁰ is oxidized in the presence of water steam, producing H₂ and iron oxide. It is also suggested that the presence of carbon dioxide (CO₂) performs a catalytic role and enhances H₂ generation^[2]. CO₂ is the primary anthropogenic greenhouse gas that contributes to significant environmental problems and global warming; consequently, the European Commission proposed to reduce GHG emissions by at least 55% by 2030 compared to 1990^[3]. However, the iron-water process requires high temperatures and pressures, leading to increased energy consumption and high cost. Therefore, from the perspective of energy and cost savings, the generation of H₂ through the oxidation of Fe⁰ at a significantly lower temperature would be desirable.

Herein, a sustainable, cost-effective method for reducing CO₂ and producing H₂ with metallic iron under anaerobic conditions at 33°C is presented. This research shows that zero-valent iron (Fe⁰) is reacted with bicarbonate solution and CO₂ and generates 96% H₂ after five days and siderite (FeCO₃), which is created in the outer surface of the metallic iron. Noteworthy, siderite can be used as a raw material in the cement or steel industry^[4]. Moreover, scrap iron pre-treated with citric acid was assessed for H₂ generation under the conditions mentioned above. The present work has investigated the effect of metallic iron and bicarbonate concentrations on H₂ production and has developed the rate law of the reaction based on the experimental data obtained. Furthermore, different temperatures in the range of 4-50°C were examined for H₂ generation.

KEYWORDS: hydrogen generation, iron, carbon dioxide, reaction rate

REFERENCES

[1] Yukesh Kannah, R., Kavitha, S., Preethi, Parthiba Karthikeyan, O., Gopalakrishnan Kumar, Dai-Viet, N. Vo., & Rajesh Banu, J. (2021). *Bioresour. Technol.* 319:124175.

[2] Duo, J., Jin, F., Wang, Y., Zhong, H., Lyu, L., Yao, G., & Huo, Z. (2016). Chem. Commun. 52(16):3316-3319.

[3] European Commission. <u>https://ec.europa.eu/clima/eu-action/european-green-deal/2030-climate-target-plan</u> [accessed 05 Jan 2022].

[4] Mora Mendoza, E.Y., Sarmiento Santos, A., Vera Lopez, E., Drozd, V., Durygin, A., Chen, J., & K Saxena, S. (2019). J. Mater. Res. Technol. 8(3):2944-2956.